مدلسازی پیشبینی EPS با استفاده از شبکههای عصبی - فازی
نویسندگان
چکیده مقاله:
پیشبینی سود هر سهم و تغییرات آن بهعنوان یک رویداد اقتصادی از دیرباز موردعلاقه سرمایهگذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. این توجه ناشی از استفاده سود در مدلهای ارزیابی سهام، کمک به کارکرد کارای بازار سرمایه، ارزیابی توان پرداخت و ارزیابی عملکرد واحد اقتصادی میباشد. هدف این تحقیق پیشبینی سود هر سهم با استفاده از شبکه عصبی – فازی و شبکه عصبی درک چندلایه(MLP) و GMDH و تعیین مدل برتر با استفاده از چهار معیار مربع میانگین خطای استاندارد(MSE) ، میانگین قدر مطلق خطا (MAE)، مربع مجذور میانگین خطا (RMSE) و (R2) ضریب تعیین میباشد. بدین منظور، شرکتهای پذیرفتهشده در بورس و اوراق بهادار تهران بهعنوان جامعه آماری و نمونه انتخابی شامل،500 سال/شرکت در قالب 24 صنعت فعال بورس در دوره زمانی 1390- 1386 میباشد که بهصورت تصادفی و روش نمونهگیری خوشهای انتخابشدهاند. نتایج تحقیق بیانگر برتری شبکه عصبی – فازی در تمامی چهار معیار ارزیابی نسبت به شبکه عصبی MLP و GMDH میباشد که نشان از توانایی بالای این شبکه در شناخت الگوهای حاکم بردادهها و وجود رابطه غیرخطی برخی متغیرهای حسابداری با سود هر سهم دارد. درنتیجه دقت پیشبینی شبکه عصبی – فازی بیشتر از شبکه¬ی MLP و GMDH است و برای پیشبینی سود هر سهم مناسب میباشد
منابع مشابه
مدل سازی پیش بینی eps با استفاده از شبکه های عصبی - فازی
پیش بینی سود هر سهم و تغییرات آن به عنوان یک رویداد اقتصادی از دیرباز موردعلاقه سرمایه گذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. این توجه ناشی از استفاده سود در مدل های ارزیابی سهام، کمک به کارکرد کارای بازار سرمایه، ارزیابی توان پرداخت و ارزیابی عملکرد واحد اقتصادی می باشد. هدف این تحقیق پیش بینی سود هر سهم با استفاده از شبکه عصبی – فازی و شبکه عصبی درک چندلایه(mlp) و gmdh و تع...
متن کاملمدلسازی تولید سفر با استفاده از روش شبکه های عصبی-فازی
دستیابی به یک نتیجه دقیق و مناسب در فرایند چهارمرحله ای آنالیز سفر به روش UTMS وابسته به برآورد دقیق و قابل قبول تعداد سفرهای تولید شده در نواحی مختلف شهر است. در بررسی مرحله ایجاد سفر با توجه به وابستگی شدید میزان سفر تولید شده در یک ناحیه به اطلاعات سهل الوصولی نظیر جمعیت ، برآورد تولید سفر معمولاً با دقت خوبی انجام میگیرد. از اینروست که در صورتیکه مقادیر برآورد شده دیگر نظیر مقادیر جذب سفر با...
متن کاملمدلسازی پیشبینی قیمت ارز با استفاده از شبکههای عصبی
بیتردید امروزه بیشترین مقدار سرمایهگذاری از طریق بازار سرمایه در تمام جهان مبادله میشود.اقتصادهای ملی بهشدت متاثر از عملکرد بازار سرماهی است. به علاوه بازار سرمایه بهعنوان یک ابزار سرمایهگذاری در دسترس، هم برای سرمایهگذاران کلان و هم برای عموم مردم شده است. بازارها نه تنها از پارامترهای کلان، بلکه از هزاران عامل دیگر نیز متاثر میشوند. تعداد زیاد و ناشناخته بودن عوامل موثر در بازار بورس،...
متن کاملمدلسازی تولید سفر با استفاده از روش شبکه های عصبی-فازی
دستیابی به یک نتیجه دقیق و مناسب در فرایند چهارمرحله ای آنالیز سفر به روش utms وابسته به برآورد دقیق و قابل قبول تعداد سفرهای تولید شده در نواحی مختلف شهر است. در بررسی مرحله ایجاد سفر با توجه به وابستگی شدید میزان سفر تولید شده در یک ناحیه به اطلاعات سهل الوصولی نظیر جمعیت ، برآورد تولید سفر معمولاً با دقت خوبی انجام میگیرد. از اینروست که در صورتیکه مقادیر برآورد شده دیگر نظیر مقادیر جذب سفر با...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 23
صفحات 1- 15
تاریخ انتشار 2014-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023